

Ma'eganedin A, a New Manzamine Alkaloid from Amphimedon Sponge

Masashi Tsuda, Daisuke Watanabe, and Jun'ichi Kobayashi*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan.

Received 24 October 1997; revised 8 December 1997; accepted 12 December 1997

Abstract: A new manzamine-related tetrahydro-β-carboline alkaloid with a methylene carbon bridge between N-2 and N-27, ma'eganedin A (1), has been isolated from an Okinawan marine sponge Amphimedon sp., and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data. The most stable conformation of 1 was deduced from molecular mechanics calculation. © 1998 Elsevier Science Ltd. All rights reserved.

During our search for new manzamine-related alkaloids from Okinawan marine sponges,¹ we have investigated extracts of the Okinawan marine sponge *Amphimedon* sp., which resulted in isolation of ma'eganedin A (1), a unique tetrahydro-β-carboline alkaloid with a methylene carbon bridge between N-2 and N-27 in addition to the same backbone ring system as that of manzamine B.² In this paper we describe the isolation, structure elucidation, and stable conformation analysis of 1.

The sponge Amphimedon sp.³ collected off Kerama Islands, Okinawa, was extracted with MeOH. EtOAc-soluble materials of the MeOH extract were purified by silica gel and alumina column chromatographies to afford ma'eganedin A (1, 9 x 10⁻⁴ %, wet weight) together with several known manzamine alkaloids such as manzamines A^{4,5} and B.²

EIMS data of ma'eganedin A⁶ {1, $[\alpha]_D^{25}$ +47° (c 0.40, MeOH)} showed only an ion peak at m/z 566 [(M-H₂O)+], and the molecular ion peak was not observed in FABMS, FDMS, or ESIMS as well as EIMS. HRFABMS [m/z 567.4067, (M-H₂O+H)+, Δ + 0.4 mmu] data of 1 indicated the molecular formula to be C₃₇H₅₂N₄O₂. ¹H NMR data (Table 1) including aromatic proton resonances [δ _H 7.49 (H-5), 7.08 (H-6),

0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII*: S0040-4039(97)10842-5

Table 1. ¹H and ¹³C NMR Data of Ma'eganedin A (1) in CD₃OD.

positn	$\delta_{\text{H}}{}^{a} \text{ m;} J \text{ (Hz)}$		$\delta_{ m H}{}^a$	m; <i>J</i> (Hz)	$\delta_{\mathrm{C}}{}^{b}$	m J	CH(Hz)c	HMBC (H)
1 3	4.68 3.45 ^d	brs brdd; 2.7, 13.7	3 280	ddd; 3.4, 8.1, 13.7	57.9 54.7	d t	143 137	3α, 37 37β
4	3.03d		2.60e	brdd; 3.4, 16.2	19.4	t	127	37 p
4a	3.03	111	2.07	Didd, 5.4, 10.2	112.2	s	121	3β, 4, 5
4b					129.2	s		6, 8
5	7.49	d; 7.8			119.5	d	158	7
6	7.08	dd; 7.2, 7.8			121.0	d	163	
7	7.18	dd; 7.2, 8.1			123.6	d	158	8 5 6
8	7.43	d; 8.1			112.8	d	163	6
8a					138.5	S		5, 7
9	11. 7 f	brs						
9a					132.1	s		1, 4β
10	3.31	m			40.0	d	127	$1, 23\alpha$
11	4.40	d; 5.5			68.1	d	158	26
12					75.7	S		11 <i>f</i> , OH-12 <i>f</i>
OH-12		brs						
13	2.52e		1.73^{d}	m	45.5	t		14, 26
14	2.54	m	2.51	m	22.5	t		
15	5.56	m			131.2	d	158	
16	5.69	m	2 27		131.8	d	153	
17	2.48	m	2.27	m	29.1	t		
18	1.34	m	1.29	m	24.7	t		220
19	2.25	m	2.07	m	27.3	t	1.40	20β
20	3.96	brt; 13.2	2.97d	m	60.4	t	142	36β
22	4.08e		3.24d	dd; 3.5, 11.5	57.3	t	148	20β, 24 , $36α$
23 24	2.13e	m bada 4.2	1.984	m	24.9	t		1.1
24 25	1.84	brd; 4.3			34.1 43.0	d		11 26 25hp
26	3.44	6			73.5	s d	137	26, 35b ^g 11, 36α, 37β
28	3.57	s dd; 5.6, 14.0	2.99	m	53.5		137	26, 37
29 29	1.93	m	1.44	m m	26.6	t t	132	20, 37
30	1.62	m	1.24	m	27.3	t		31a8
31	2.30	m	1.63	m	25.2	t		33
32	5.62	m	1.03	111	133.7	ď	157	34ag
33	5.62	m			130.4	d	163	34a8, 35b8
34	2.33	m	1.59	m	21.0	t	105	32, 33, 35
35	1.57	m	1.36	m	33.5	t		36β
36	3.39e	brd; 13.0	3.13d	d; 13.0	64.7	t	132	22β, 24, 26, 35bg
37		d; 15.5		d; 15.5	60.2	t	143	3β, 26, 28
٥,	T.V2	w, 10.0	5.05	u, 17.7	00.2	L	175	op, 20, 20

^a Recorded at 600 MHz. ^b Recorded at 125 MHz. ^c $^{1}J_{\text{CH}}$ values were determined from HMQC experiment without CPD decoupling during acquisition, and the resolution for F1 was 5.09 Hz. ^d α H. ^e β H. ^fRecorded in CDCl₃. In the ¹H NMR spectrum in CDCl₃, OH proton at C-11 was not observed. ^g a and b denote upfield and downfield resonances of geminal protons, respectively.

7.18 (H-7), and 7.43 (H-8)] of 1 were similar to those of manzamine alkaloids with a tetrahydro- β -carboline ring such as manzamine H.^{1,7} In the ¹³C NMR (Table 1) spectrum of 1, totally 37 carbon signals including six quaternary carbons (four sp^2 and two sp^3), thirteen methines (eight sp^2 and five sp^3), and eighteen methylenes were observed, although manzamine H has 36 carbons. Detailed analyses of 2D NMR data [¹H-¹H COSY, HOHAHA, HMQC, and HMBC (Table 1)] of 1 revealed the presence of a decahydroisoquinoline moiety connected to a tetrahydro- β -carboline and 11- and 13-membered rings, consisting of 36 carbon

atoms. The remaining methylene carbon signal at δ_C 60.2 was assigned to be located between N-2 and N-27 on the basis of HMBC correlations for H₂-37/C-1, H-37 β /C-3, H-37 β /C-26, and H₂-37/C-28. The presence of the two hydroxy groups at C-11 and C-12 was inferred by the upfield chemical shifts of C-11 (δ_H 4.40; δ_C 68.1) and C-12 (δ_C 75.7) as well as the ¹³C NMR deuterium-induced shift experiments using CD₃OH, which was also supported by positive coloring test to lead tetracetate. Thus the gross structure of ma'eganedin A was elucidated to be 1.

The relative stereochemistry of ma'eganedin A (1) as well as both boat conformations of the cyclohexane (C-10-C-11,12,26,25,24) and piperidine (N-21-C-22,23,24,25,36) rings were deduced from NOESY data and ${}^{1}\text{H}$ - ${}^{1}\text{H}$ coupling constants as shown in Fig. 1. The chemical shift of C-13 (δ_{C} 45.5) was close to the chemical shifts of C-13 (aprproximatly δ_{C} 40) of manzmaines possessing an α -hydroxy group at C-12, 2,7,8 thus indicating that 1 had an α -hydroxy group at C-12. The small ${}^{1}\text{H}$ - ${}^{1}\text{H}$ coupling constant (< 1 Hz) for H-1/H-10 and NOESY correlations for H-1/H-10 and H-1/H-11 suggested that H-1 was β -oriented. Cis-ring junction between the cyclohexene and piperidine was indicated by a NOESY correlation for H-24/H-35b. Compound 1 showed a positive CD cotton effect ($\Delta \epsilon$ +19.3) at 222 nm, implying R-configuration at C-1 of the tetrahydro- β -carboline ring. 1,9 Thus the absolute stereochemistry of 1 was elucidated to be 1R, 10R, 11S, 12R, 24S, 25R, and 26R.

The most stable conformation (total energy; 61.3 kcal/mol) of ma'eganedin A (1) (Fig. 2) was obtained by systematic conformational searching using pseudo Monte Carlo simulation 10,11 in MacroModel ver. 5.0 program. The distances of OH-12/N-2 (2.29 Å) and OH-12/N-27 (3.15 Å) in the conformation suggested the presence of two hydrogen bonds between OH-12 and N-2 and between OH-12 and N-27, which might be associated with the low-field chemical shift (δ_H 10.9) of the hydroxy proton at C-12 observed for the 1H NMR spectrum of 1 in CDCl₃. Comparison of the stable conformation of 1 with that of manzamine B (total energy; 107.9 kcal/mol) revealed that the tosion angle (-170°) between C-9a-C-1 and C-10-C-11 bonds in 1 was quite different from that (52°) of manzamine B as shown in Fig. 2. This difference may be mainly derived from the fact that orientation of the tetrahydro- β -carboline moiety in 1 was fixed by the C-37 carbon

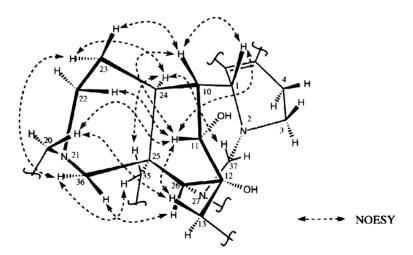


Fig. 1 Relative Stereochemistry of Tetracyclic System of Ma'eganedin A (1) Elucidated by NOESY Data and Proton Couplings.^a

The coupling constants for this moiety (H/H in Hz) are as follows: 1/10 < 1, $3\alpha/4\alpha (2.7)$, $3\alpha/4\beta (< 1)$, $3\beta/4\alpha (8.1)$, $3\beta/4\beta (3.4)$, 10/11 (5.5), 10/24 (< 1), $23\alpha/24 (4.3)$, $23\beta/-24 (< 1)$, $22\alpha/23\alpha (3.5)$ $22\alpha/23\beta (< 1)$, $22\beta/23\alpha (9.0)$, and $22\beta/23\beta (< 1)$.

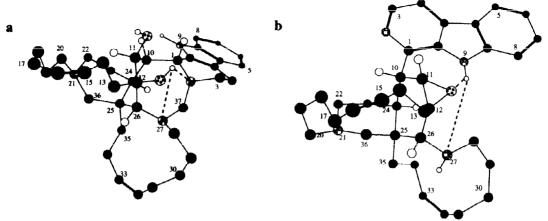


Fig. 2 Most Stable Conformation^a of Ma'eganedin A (1) (a) and Manzamine B ($\bar{\mathbf{b}}$) Calculated by MacroModel Program.

bridge between N-2 and N-27.

Ma'eganedin A (1) is the first manzamine alkaloid with a methylene carbon bridge between N-2 and N-27. Compound 1 exhibited antibacterial activity against Sarcina lutea (MIC; 2.8 μg/mL), Bacillus subtilis (2.8 μg/mL), and Corynebacterium xerosis (5.7 μg/mL), and showed cytotoxicity against murine leukemia L1210 cells (IC₅₀, 4.4 μg/mL).

Acknowledgements We thank Mr. Z. Nagahama for his help with sponge collection and Dr. J. Fromont, Western Australian Museum, for identification of the sponge. This work was partly supported by a Grant-in-Aid for Scientific Research from the Naito Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- 1. Tsuda, M.; Inaba, K.; Kawasaki, N.; Honma, K.; Kobayashi, J. Tetrahedron 1996, 52, 2319-2324 and references cited therein.
- 2. Sakai, R.; Kohmoto, S.; Higa, T.; Jefford, C. W.; Bernardinelli, G. Tetrahedron Lett. 1987, 28, 5493-5496.
- 3. Description of the Amphimedon sponge (SS-264) has been reported in the previous paper: Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M. J. Org. Chem. in press.
- 4. Sakai, R. Higa, T. Jefford, C. J.; Bernardinelli, G. J. Am. Chem. Soc. 1986, 108, 5404-6405.
- 5. Nakamura, H.; Deng, S.; Kobayashi, J.; Ohizumi, Y.; Tomotake, Y.; Matsuzaki, T.; Hirata, Y. Tetrahedron Lett. 1987, 28, 621-624.
- 6. 1: A colorless amorphous solid; $[\alpha]_D^{25}$ +47° (c 0.40, MeOH); UV (MeOH) λ_{max} 205 (ϵ 13000), 223 (2500), 274 (2500), and 322 nm (4000); CD (MeOH) λ_{ext} 222 ($\Delta\epsilon$ +19.3) and 268 (-1.7) nm; IR (KBr) ν_{max} 3420 (br), 2920, 1640, 1540, and 1090 cm⁻¹; ¹H and ¹³C NMR (see Table 1); EIMS m/z 566 (M-H₂O)+; FABMS m/z 567 (M-H₂O+H)+; HRFABMS m/z 567.4067 (M-H₂O+H)+, calcd for $C_{37}H_{51}N_4O$, 567.4063.
- 7. Kondo, K.; Shigemori, H.; Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Org. Chem. 1992, 57, 2480-2483.
- The carbon chemical shift of C-13 (δ_C 45.5) in 1 quitely differed from that of C-13' (δ_C 31) of kauluamine, which possessed a β-hydroxy group at C-12. Ohtani, I. I.; Ichiba, T.; Isobe, M.; Kelly-Borges, M.; Scheuer, P. J. J. Am. Chem. Soc. 1995, 117, 10743-10744.
- 9. Stöckigt, J.; Zenk, M. H. J. Chem. Soc., Chem. Commun. 1977, 646-648.
- 10. Goodman, J. M.; Still, W. C. J. Comput. Chem. 1991, 12, 1100-1117.
- 11. Computational methods for ma'eganedin A (1) and manzamine B; The closure bonds were chosen at C-17-C-18, C-22-C-23, C-29-C-30, and N-27-C-37 with closure limit from 1 to 4 Å. Five thousand Monte Carlo steps were performed to obtain the lowest energy conformation, which was finally minimized by molecular mechanics calculation of ANBER* force field in H₂O.
- 12. Mohamadi, F.; Richards, N. G.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440-467.

^aMethylene and olefin protons were omitted and dotted lines suggested the presence of hydrogen bonds.